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Abstract

A number of recent studies have focused on enhancing hydrologic prediction via the
assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model.
The majority of these approaches have viewed the problem from purely a state or pa-
rameter estimation perspective in which remotely-sensed soil moisture estimates are5

assimilated to improve the characterization of pre-storm soil moisture conditions in a
hydrologic model, and consequently, its simulation of runoff response to subsequent
rainfall. However, recent work has demonstrated that soil moisture retrievals can also
be used to filter errors present in satellite-based rainfall accumulation products. This
result implies that soil moisture retrievals have potential benefit for characterizing both10

antecedent moisture conditions (required to estimate sub-surface flow intensities and
subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to es-
timate the total surface runoff volume). In response, this work presents a new se-
quential data assimilation system that exploits remotely-sensed surface soil moisture
retrievals to simultaneously improve estimates of both pre-storm soil moisture condi-15

tions and storm-scale rainfall accumulations. Preliminary testing of the system, via a
synthetic twin data assimilation experiment based on the Sacramento hydrologic model
and data collected from the Model Parameterization Experiment, suggests that the new
approach is more efficient at improving stream flow predictions than data assimilation
techniques focusing exclusively on the constraint of antecedent soil moisture condi-20

tions.

1 Introduction

Enhancements in hydrologic prediction and forecasting are frequently cited as a key
benefit of satellite-based surface soil moisture retrievals (Entekhabi et al., 2003; Lak-
shmi, 2004; NRC, 2007). This potential is likely to receive greater levels of attention25

in the next decade as attempts are made to demonstrate operational applications for
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soil moisture data products emerging from both current and next-generation satellite
missions. Of particular importance are upcoming launches of the first two dedicated
soil moisture missions: the ESA Soil Moisture and Ocean Salinity (SMOS) mission in
2009 (Kerr et al., 2001) and the NASA Soil Moisture Active/Passive (SMAP) mission in
2012 (NRC, 2007).5

As represented in traditional hydrologic models, stream flow prediction is a dual es-
timation problem requiring information describing both the volume of rainfall occurring
within a storm and the ability of a watershed to infiltrate such rainfall. Such infiltra-
tion capacity is largely determined by prevailing soil moisture conditions. Therefore, to
date, most strategies for integrating remotely-sensed soil moisture into the hydrologic10

prediction (or forecasting) problem have focused solely on improving the prediction of
antecedent soil moisture conditions. A variety of methodologies have been applied to
this goal including the direct use of remotely-sensed soil moisture fields to initialize a
hydrologic model (Goodrich et al., 1994; Jacobs et al., 2003; Weissling et al., 2007),
the calibration of hydrologic model soil moisture predictions using remotely-sensed15

soil moisture retrievals (Parajka et al., 2006) and the optimal merging of modeled and
remotely-sensed soil moisture using sequential data assimilation techniques (Pauwels
et al., 2002; Aubert et al., 2003; Francois et al., 2003; Crow et al., 2005; Kantamneni
et al., 2005).

To date, results from such experiments have been mixed and there is currently little20

compelling evidence that remotely-sensed soil moisture retrievals can aid runoff predic-
tion in ungauged basins (Parajka et al., 2006). Somewhat typical is Crow et al. (2005)
who found an improved correlation between antecedent precipitation index (API) values
and subsequent storm-scale runoff ratios when soil moisture retrievals from a passive
microwave radiometer were sequentially assimilated into the API model. However, the25

marginal advantage of assimilating soil moisture disappeared when the API model was
modified slightly to incorporate air temperature observations into estimates of soil water
loss due to evapotranspiration. Other studies were able to identify improvement (upon
the integration of remotely-sensed soil moisture) in only a subset of the total basins
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they examined (Pauwels et al., 2002; Parajka et al., 2006).
The above-mentioned approaches are all based on the assumption that an improved

representation of antecedent soil moisture conditions in hydrologic models will ensure
improved runoff prediction. However, a number of important cases exist where an-
tecedent soil moisture conditions are of relatively minor importance for determining5

eventual basin response to rainfall. For example, theoretical arguments suggest that
the role of antecedent soil moisture is diminished for very intense runoff events that
are of primary importance for flood forecasting (Wood et al., 1990). In addition, for
basins lacking adequate rain-gauge coverage, constraining antecedent soil moisture
represents only a fraction of the overall stream flow prediction problem – the larger10

fraction of uncertainty being due to error in observed rainfall (Oki et al., 1999). Finally,
the relationship between antecedent soil moisture and runoff is strongly nonlinear and
characterized by sharp thresholds which are ill-suited for the application of data assim-
ilation techniques designed for linear models.

These difficulties suggest that some merit exists in efforts to reformulate the basis15

for integrating remote sensing retrievals into hydrologic models. By focusing solely on
the antecedent state estimation aspects of runoff prediction, and neglecting rainfall un-
certainty, attempts to integrate remotely-sensed soil moisture into hydrologic forecasts
have limited themselves to addressing only a fraction of the total stream flow predic-
tion problem. Recent work by Crow et al. (2008) demonstrates that remotely-sensed20

surface soil moisture retrievals can also be used to directly improve the accuracy of
satellite-based rainfall accumulation estimates. At least in data-poor areas of the world
heavily reliant on satellite-based rainfall retrievals, this result broadens the basis of
attempts to enhance stream flow prediction via surface soil moisture retrievals. Specif-
ically, it presents an opportunity to simultaneously reduce the impact of antecedent soil25

moisture and rainfall accumulation uncertainty on hydrologic model predictions. Note
that this opportunity exists only for hydrologic prediction applications in which near
real-time rainfall observations – as opposed to quantitative rainfall forecasts from a nu-
merical weather prediction model – are used to obtain rainfall accumulation inputs for

2008

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 2005–2044, 2008

Improving hydrologic
prediction using data

assimilation

W. T. Crow and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

a hydrologic model.
This paper attempts to realize this potential by reframing the remotely-sensed

soil moisture/hydrologic forecasting problem in such a way that potential benefits of
remotely-sensed soil moisture on both state (i.e. antecedent soil moisture) and flux
(i.e. observed rainfall) estimation are captured. Given the dual use of remotely-sensed5

soil moisture retrievals in this framework, special emphasis will be placed on design-
ing a system that avoids the potentially deleterious effect of correlated errors between
hydrologic model forecasts and assimilated observations.

2 Modeling and data

All hydrologic modeling here is based on application of the Sacramento (SAC) hydro-10

logic model. In the United States, the SAC model has been used extensively for opera-
tional stream flow forecasting within medium-sized (∼1000 km2) river basins (Burnash
et al., 1973; Geogakakos, 2005). Soil moisture accounting in the model is based on
the estimation of six interdependent soil water states: upper-zone free water content
(UZFWC), upper-zone tension water content (UZTWC), lower-zone tension water con-15

tent (LZTWC), lower-zone free primary water content (LZFPC), lower-zone free supple-
mental water content (LZFSC) and basin saturated fraction (ADIMP). The movement
of water between these states is based on the SAC model parameterization described
in Sorooshian et al. (1993).

Combined with measurements of rainfall accumulation, these six states are used to20

predict four separate runoff processes: surface infiltration runoff (SIR) occurring when
rainfall accumulation within a given time step is large enough to fill available upper-
zone tension and free water storage capacity, surface saturation runoff (SSR) occurring
when rainfall falls on saturated portions of the basin (as defined by ADIMP), shallow
sub-surface interflow (SIF) expressed as a direct function of UZFWC, and deep base25

flow (BF) expressed as a direct function of LZFSC and LZFPC. Here, we will make a
distinction between “direct” surface runoff components (SIR and SSR) that are driven
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primarily by incident rainfall and exhibit only a secondary dependence on antecedent
soil moisture conditions and “indirect” sub-surface runoff generating processes (SIF
and BF) that are wholly a function of soil moisture and do not require the simultaneous
presence of non-zero rainfall to generate runoff.

Potential evapotranspiration (PET), daily rainfall (P ), and stream flow time series data5

are acquired for specific basins from data sets prepared as part of the Model Parame-
terization Experiment (MOPEX) (Schaake et al., 2001). Inclusion into the United States
portion of the MOPEX experiment was predicated on individual basins meeting thresh-
old requirements related to a lack of anthropogenic stream flow impoundment and/or
diversion and possessing adequate spatial rain gauge coverage. Here, we additionally10

subset the original United States MOPEX datasets to include only basins located below
36◦ N latitude (to minimize snow effects) with an area greater than 100 km2 (to elimi-
nate basins smaller than the resolution of soil moisture products expected from next-
generation satellite-based soil moisture products). Of the 438 United States MOPEX
basins, 97 meet these two additional criteria. Figure 1 plots long-term runoff ratios15

(mean annual stream flow divided by mean annual rainfall) and drainage area for each
of these 97 basins.

Based on MOPEX P and PET forcing data, the SAC model was run on a daily time
step over each of the basins in Fig. 1 during the 55-year period between 1 January
1949 and 31 December 2003. Basin specific model parameters are obtained from SAC20

model stream flow calibration performed as part of the MOPEX experiment. Based on
these calibrated parameters, Fig. 2 provides representative examples of observed and
predicted stream flow for five of the 97 US MOPEX basins considered here. Stream
flow routing is based on convoluting runoff using a simple exponentially decaying unit
hydrograph with a folding length varied between 1 and 5 days (depending on basin25

size). The reasonable performance of the SAC model over a range of climate and basin
size conditions suggests that it forms a reliable basis for the synthetic data assimilation
experiments to follow.
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3 Data assimilation

Here, two separate data assimilation approaches are considered for the integration
of remotely-sensed soil moisture information into the SAC model. First, the use of
a simplified Kalman filtering methodology to correct rainfall input fed into the SAC
model. Second, the application of either an Ensemble Kalman filter (EnKF) or smoother5

(EnKS) to correct SAC soil moisture states based on the availability of remotely-sensed
surface soil moisture retrievals. The data assimilation approach utilized for both cor-
rection strategies are described in the following two sub-sections (Sects. 3a and b). As
noted in Sect. 1, the central theme of this paper is unifying these two methodologies
and developing a data assimilation system capable of simultaneously correcting both10

SAC model soil moisture states and rainfall inputs.

3.1 Rainfall correction using the Kalman filter

Using remotely-sensed soil moisture retrievals from the Advanced Microwave Scanning
Radiometer (AMSR-E) aboard the NASA Aqua satellite, Crow et al. (2008) demon-
strated the feasibility of correcting uncertain short-term rainfall accumulation estimates15

using remotely-sensed surface soil moisture retrievals. Their approach is based the
assimilation of surface soil moisture retrievals into a simple Antecedent Precipitation
Index (API) model

APIj=γjAPIj−1+P
′
j (1)

where j is a daily time index, P ′ an (uncertain) estimate of daily rainfall accumulation20

(mm), and γ varies according to day-of-year (d ) as

γj=α+β cos(2πdj/365). (2)

Here, the dimensionless parameters α and β are held constant at values of 0.85 and
0.05. Remotely-sensed surface soil moisture estimates θ are used to update Eq. (1)
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via a Kalman filter.

API+j =API−j +Kj (θj−API−j ), (3)

and “−” and “+” denote API values before and after Kalman filter updating, respectively.
Following Reichle and Koster (2005), daily θ estimates are obtained by rescaling raw
volumetric soil moisture retrievals θ◦[m3m−3] following5

θj=(θ◦
j−µ

θ)(σAPI/σθ)+µAPI (4)

to match the API model in expressing soil moisture in water depth units [mm] and
ensure that rescaled retrievals possess a long-term mean (µ) and standard deviation
(σ) matching those derived from a multi-year integration of API for the same pixel. Soil
moisture retrieval mean (µθ) and standard deviation (σθ) estimates are obtained by10

sampling a long-term time series of θ◦. Likewise, the API mean (µAPI) and standard
deviation (σAPI) statistics in Eq. (4) are sampled from an API time series generated
using Eq. (1) and no Kalman filter updating. The Kalman gain K in Eq. (3) is then given
by

Kj = T−
j /(T−

j +R), (5)15

where T− is the scalar error variance in API forecasts and R is the error variance of a
rescaled θ retrieval. At measurement times, T− is updated via

T+
j =(1−Kj )T

−
j . (6)

Between soil moisture retrievals, and the adjustment of API and T via Eq. (3) and
Eq. (6), API is forecasted in time using observed P ′ and Eq. (1). In parallel, T+ is20

updated in time as

T−
j =γ

2
j T

+
j−1+Q (7)

where Q relates the forecast uncertainty added to an API estimate during propagation
between times j -1 and j . Here temporally constant values of R and Q are calibrated on
a pixel-by-pixel basis using the tuning procedure described in Crow and Bolten (2007).25

2012

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 2005–2044, 2008

Improving hydrologic
prediction using data

assimilation

W. T. Crow and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

To correct rainfall, Crow et al. (2008) utilize analysis increments δ calculated during
the updating of API with θ via Eq. (3)

δj=API+j −API−j =Kj (θj−API−j ). (8)

Values of δ reflect the depth of water (mm) added to an API forecast in response to in-
formation contained in surface soil moisture retrievals. As such, it contains information5

concerning errors in near-past P ′ estimates used to forecast API. To this end, Crow
et al. (2008) propose a simple additive correction which utilizes δ to correct errors in
uncertain P ′ estimates

P ∗
j =P

′
j +λδj . (9)

The rescaling parameter λ is required to capture the impact of processes which may10

lead to differences between δ and rainfall errors. Foremost of which is the near cer-
tainty that not all errors in API predictions are directly attributable to rainfall uncertainty.
Some volume portion of δ will almost certainly be associated with our simplistic repre-
sentation of soil water loss (i.e. the combined effect of soil drainage and evapotranspi-
ration) in Eq. (1). This implies a λ value less than one is required to filter the impact of15

such error before it can be misattributed to rainfall. Likewise some portion of the orig-
inal rainfall error is damped via either runoff or infiltration beyond the shallow surface
zone prior to the acquisition of a θ retrieval used to calculate δ. Such processes will
require an increase in λ to compensate for the volume of rainfall error that is not directly
detectable by the remote sensing observations.20

As a practical solution, Crow et al. (2008) propose estimating temporally constant
values of λ via the minimization of the root-mean-square difference between corrected
rainfall P ∗ and some additional estimate of rainfall accumulation. Here, such tuning is
performed relative to the benchmark P obtained from dense rain gauges within each
MOPEX basin. Such tuning against high-quality rain gauge data will not be feasible25

in many data-poor settings; however, Crow et al. (2008) demonstrates that λ can also
be accurately specified using an additional, independently-acquired, satellite-based
rainfall product.
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An additional concern is the possibility that the application of Eq. (9) will lead to non-
physical negative values of P ∗. Simply resetting such values to zero creates a long-term
bias in P ∗ values relative to P ′. As an alternative we define a positive threshold τ such
that P j ∗=0 for P ∗

j <τ and P ∗
j =P

∗
j −τ for P ∗

j >=τ. The value of τ is then iteratively varied
until the application of these rules leads to a resulting P ∗ time series which is unbiased5

with respect to P ′.

3.2 State correction using the ensemble Kalman filter or smoother

The Ensemble Kalman filter (EnKF) is based on the generation and propagation of a
Monte Carlo ensemble of model replicates to provide the error covariance information
required by the Kalman filter to update state estimates based on the availability of10

observations. Here, this ensemble is generated using a combination of noise applied
to both SAC model forcing (i.e. PET and P ) and SAC model soil moisture states (see
Sect. 4 for details). At time j , the vector of SAC model states associated with the i th
Monte Carlo replicate is

Si ,j=[UZFWCi ,j , UZTWCi ,j , LZTWCi ,j , LZPFWi ,j , LZSFWi ,j , ADIMPi ,j ]
T . (10)15

This vector can be transformed into an estimate of volumetric surface soil moisture
(assumed to correspond to a remote sensing observation) via the application of the
linear observation operator

H=[ρ/(UZFWM+UZTWM), ρ/(UZFWM+UZTWM),0,0,0,0] (11)

where ρ is soil porosity, UZFWM(m) the maximum capacity of free water in the surface20

zone and UZTWM(m) the maximum capacity of tension water in the surface zone.
Given the concurrent availability of a remotely-sensed surface soil moisture observation
θ◦ with error variance R◦, replicates of S are updated following

S+
i ,j=S

−
i ,j+K j (θ

◦
j+νi ,j − HS

−
i ,j ) (12)
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where the perturbation term ν is a mean-zero Gaussian random variable with scalar
variance R◦ and K is

K j=HCj/(HCjH
T+R◦). (13)

Here, the forecast error covariance matrix C is sampled from a 35-member Monte Carlo
ensemble of background SAC model S predictions. Final EnKF state predictions are5

obtained by averaging replicates across the entire ensemble.
The EnKF is designed to update model-forecasted state predictions at the same

time j an observation is acquired. No attempt is made to reanalyze previous model
predictions in response to a particular observation. In contrast, the Ensemble Kalman
Smoother (EnKS) can be used to update all model states predictions within a fixed lag10

of past time (Dunne and Entekhabi, 2005). While the SAC model is run on a daily time
step, variations in the three free water states (i.e. UZFWC, LZPFW, and LZSFW) and
ADIMP are actually calculated on a three-hourly basis using an sub-daily model time
loop. For our application of the EnKS, an augmented Sj vector is created (S∗

j−1→j )
which contains not only the six SAC model soil moisture state variables at time j but15

also all SAC model state predictions between times j -1 and j (inclusive of end points)
and including 3-hourly water balance calculations of UZFWC, LZPFW, LZSFW and
ADIMP. The matrix C∗ is the new covariance matrix for this 40-element augmented
state vector S

∗. As in the EnKF, components of this augmented covariance matrix
are sampled directly from the SAC model ensemble and updated with an expression20

analogous to Eq. (10)

S
∗,+
i ,j−1→j=S

∗,−
i ,,j−1→j+K

∗
j (θ

◦
j+νi ,j−H

∗S∗,−
i ,,j−1→j ) (14)

where

K ∗
j=H

∗C∗
j/(H∗C∗

jH
∗T+R◦) (15)

and H
∗ is a 40-element vector of the form25

H∗=[ρ/(UZFWM+UZTWM), ρ/(UZFWM+UZTWM),0, ...,0]. (16)
2015
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As in the EnKF, final EnKS state predictions are obtained by averaging across the
updated soil moisture ensemble.

Figure 3 provides a brief illustration of differences between the EnKF and a fixed-lag
EnKS approach. For a real-time filtering problem (Fig. 3a), a soil moisture observation
at time j is used to update concurrent SAC model state replicates at time j using an5

EnKF. These updated forecasts, and an estimation of total rainfall accumulation oc-
curring between time j and j+1, are then used to initiate a SAC model ensemble of
states predictions between times j and j+1. Alternatively, the entire analysis could
be delayed until a soil moisture observation is obtained at time j+1. In this formula-
tion, the one-day, fixed-lag EnKS is employed to update all SAC model state replicates10

between j and j+1 using the soil moisture observation at time j+1 (Fig. 3b). Note
that, unlike the EnKF, the EnKS allows for SAC model states between j and j+1 to
be corrected based on the observation obtained at time j+1. The key advantage of
the EnKS is that state estimates at time j (as well as intermediate free water states
calculated between j and j+1) are constrained via information gleaned from the sub-15

sequent observation at time j+1. In contrast, the EnKF is only forward propagating in
the sense that EnKF estimates at any particular time are not impacted by subsequent
observations. Consequently, background flux and state predictions obtained from the
EnKS should be relatively more accurate than comparable predictions by the EnKF
(Dunn and Entekhabi, 2005).20

4 Synthetic experiment methodology

Our overall approach is based on the application of the Sacramento (SAC) hydrologic
model to 97 MOPEX study basins along the southern tier of the contiguous United
States. A series of synthetic data assimilation experiments are individually conducted
for each basin. All such experiments are based on the designation of output from a25

single SAC model realization as “truth”. The approximate realism of these truth simula-
tions is supported by comparisons between their stream flow predictions and long-term

2016

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 2005–2044, 2008

Improving hydrologic
prediction using data

assimilation

W. T. Crow and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

hydrographs obtained from stream flow observations taken at the outlet of MOPEX
basins (Fig. 2). Runoff and soil moisture predictions from the truth SAC runs are with-
held to serve as a benchmark for future runs and surface soil moisture predictions
(perturbed by a suitable amount of additive Gaussian noise) are assumed to represent
remotely-sensed surface soil moisture retrievals. Using either an EnKF or EnKS ap-5

proach (see Fig. 3), these retrievals are subsequently assimilated back into a perturbed
representation of the SAC model to examine the degree to which their integration can
correct the perturbed SAC model simulation back to benchmark results obtained in the
“truth” SAC model simulation. Results obtained directly from the perturbed represen-
tation of the SAC model (prior the implementation of any data assimilation technique)10

are referred to as “open loop” results which define the baseline by which the relative
improvement in subsequent data assimilation results is evaluated.

Perturbations to the SAC model are based on additive noise applied directly to SAC
water balance states in S and the daily PET input time series. Daily perturbations
applied to individual states are assumed to be serially uncorrelated and mutually in-15

dependent random variables sampled from a mean zero, Gaussian distribution with a
standard deviation equal to 5% of the total capacity of each state. Additive PET per-
turbations are similarity uncorrelated and sampled from a mean-zero, Gaussian dis-
tribution with a standard deviation of 1 mm. Negative PET values resulting from such
perturbations are simply reset to zero. In addition to internal model and PET errors,20

uncertainty in rainfall is captured through the multiplicative scaling of observed rainfall
P with a random factor χ sampled from a mean-one, log-normal distribution with a
dimensionless standard deviation of one

P ′=χP, χ ∼ logN (1,1). (17)

For our particular representation of a synthetic twin experiment, all model perturbations25

(presented above) are actually applied twice. During their first application, they are ap-
plied to degrade the SAC model truth simulation and create a perturbed SAC model
simulation. Subsequently, they are re-applied to create an ensemble of SAC model
runs (calculated around the perturbed SAC model simulation) during the application
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of an EnKF or EnKS to correct the perturbed SAC model simulation back to the truth
simulation. In addition, the same set of synthetically-generated soil moisture retrievals
assimilated into the SAC model are also assimilated into an API model (see Sect. 3.1)
in an attempt to correct for precipitation error introduced into SAC precipitation forc-
ing via Eq. (17). In this way, the synthetic experiment accounts for the possibility of5

correcting both SAC model state and rainfall forcing error.
Remotely-sensed surface soil moisture retrievals (t) are assumed to be available at

a daily frequency with a root-mean-squared (RMS) accuracy of 0.03 m3m−3 (defined
as the fraction of total soil volume occupied by water). R◦ is the square of this value
and R=R◦(σAPI/σθ)2. During the application of the EnKS and EnKF within the syn-10

thetic experiment, all model and observational error covariances are assumed to be
known. However, the sensitivity of key experimental results to the magnitude of these
covariance values is examined in Sect. 6.3.

5 State and/or rainfall correction strategies

To date, a large number of synthetic twin data assimilation studies – similar to the15

one described above – have been conducted to examine the potential for improving
hydrologic model predictions by applying state estimation techniques (like the EnKF
or EnKS) to assimilate remotely-sensed soil moisture retrievals. This study adds the
novel element of simulating the potential impact of correcting rainfall inputs (in addition
to soil moisture states) using the approach described in Sect. 3.1. Our primary analysis20

will focus on comparing soil moisture and runoff results derived from the five separate
data assimilation strategies outlined in Fig. 4.

The first “Rainfall Correction” strategy (Case 1) is based on the application of the
procedure outlined in Sect. 3.1 to correct rainfall forcing data prior to its use as a SAC
model forcing variable. Note that this approach does not involve the actual assimila-25

tion of soil moisture retrievals into the SAC model. Instead, the “Rainfall Correction”
approach attempts to improve runoff prediction solely through the correction of SAC
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rainfall forcing. Conversely, the “State Correction Only – EnKF/EnKS” approach (com-
prising Cases 2 and 3 in Fig. 4) employs the assimilation of surface soil moisture re-
trievals into the SAC model using an EnKF (or EnKS) without attempting to correct
model rainfall input. Note that, starting with Case 2, we reference the SAC model twice
in the schematic for each case. The first reference occurs as part of an ensemble5

created to run the EnKF or EnKS and predict SAC model soil moisture states in S (or
S
∗). The second occurrence is during a post-processing step in which the ensemble-

mean of these state predictions are directly inserted into a single realization of the
SAC model for the sole purpose of predicting runoff (RunoffSAC in Fig. 4). Note that
the ensemble-mean soil moisture prediction made by this post-processing run is not10

used to initialize any subsequent SAC model forecast. At least for the Case 2 imple-
mentation of the EnKF, it is also possible to neglect this post-processing stage and
simply average SAC/EnKF runoff predictions across the ensemble to obtain a single
EnKF runoff prediction. However, we found that the inclusion of the post-processing
stage had a generally beneficial impact on EnKF runoff predictions relative to this al-15

ternative approach. Consequently, we retained the use of a post-processing step for
all EnKF-based data assimilation results.

The “State Correction Only – EnKS” approach (Case 3) is identical to Case 2 except
that estimation of the augmented SAC model state vector S∗ is based on implementa-
tion of a one-day, fixed-lag EnKS – rather than an EnKF – to update SAC model soil20

moisture states (Fig. 3). Both the EnKF and EnKS are applied to produce Cases 2
and 3, respectively. However, to reduce the proliferation of cases, only the EnKS is
employed for Cases 4 and 5 described below.

None of the first three cases in Fig. 4 take the next step of simultaneously attempt-
ing both rainfall and state correction based on remotely-sensed surface soil moisture25

retrievals. This possibility is first examined in Case 4 where corrected rainfall is used
to both force an EnKS state correction procedure and during the post-processing cal-
culation of runoff. This type of approach is potentially problematic in that surface soil
moisture retrievals are used both to modify forcing data for SAC model forecasts and
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as observations which are subsequently assimilated into the SAC model via the EnKS.
Such dual use of soil moisture retrievals can conceivably lead to correlation between
forecasting and observations errors within the EnKF, and, consequently, sub-optimal
filter performance. A final potential strategy (Case 5) tries to mitigate this possibility
by utilizing corrected rainfall only in the post-processing calculation of runoff (Fig. 4)5

and using uncorrected rainfall (P ′) for generation of the SAC model forecast ensemble
in the EnKS. Since soil moisture predictions made during the post-processing stage
are not fed back into the EnKS, this strategy avoids the potential for cross-correlated
errors within the EnKS while still allowing for the dual correction of errors present in
both antecedent soil moisture and rainfall.10

6 Results

Figure 4 lays out a number of possible approaches for integrating remotely-sensed
surface soil moisture retrievals into runoff estimates produced by a hydrologic model.
To date, most data assimilation studies focusing on this goal have followed Case 2 by
formulating the problem purely in a state estimation framework and applying a sequen-15

tial filtering algorithm to improve the estimation of pre-storm antecedent soil moisture
conditions in the hope that this will aid in the subsequent estimation of storm-scale
runoff. As stated above, our primary focus is on evaluating the added benefit of refor-
mulating the runoff estimation problem as a smoothing reanalysis problem (e.g. Case
3) and attempting the simultaneous correction of both model soil moisture states and20

the rainfall forcing used to drive the model (e.g. Cases 4 and 5). Figure 5 shows sample
time-series results for a single MOPEX basin. Given the availability of remotely-sensed
surface soil moisture retrievals, you can correct a time series of daily rainfall accumula-
tions (Fig. 5a) and/or implement an EnKF (or EnKS) to correct SAC model soil moisture
predictions (Fig. 5b). Both types of corrections should aid in the subsequent calcula-25

tions of runoff by the SAC model. Cases 1, 2 and 3 explore the application of one type
of correction (antecedent soil moisture or rainfall) in isolation. However, Cases 4 and
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5 explore the possibility of obtaining better SAC model runoff estimates by simultane-
ously implementing both corrections (Fig. 5c).

6.1 MOPEX Basin Results

Based on the synthetic twin experimental methodology introduced in Sect. 4, Fig. 6
compares runoff and upper-zone soil moisture root-mean-square error (RMSE) results5

calculated for all 97 MOPEX basins and the five separate data assimilation cases de-
scribed in Fig. 4. Unless otherwise noted, all results are presented as normalized
RMSE in which open loop SAC model RMSE results are used to normalize RMSE
results obtained after the implementation of various data assimilation techniques. An
improvement in performance relative to the uncorrected open loop case is therefore re-10

flected in a normalized RMSE value less than one (see dotted line in Fig. 6). All RMSE
results are based on daily SAC model predictions made during the 55-year period be-
tween 1 January 1949 and 31 December 2003. Symbols in Fig. 6 represent the mean
for all basins and error bars reflect the one-standard deviation spread of normalized
RMSE across all 97 basins.15

In Fig. 6, results for the case of rainfall correction only (Case 1) and of EnKF-based
state correction (Case 2) are diametrically opposed in that Case 1 reduces daily rain-
fall RMSE relative to the open loop case, but provides little, if any, net improvement
to upper-zone soil moisture predictions – defined as the product of H in Eq. (11) and
S in Eq. (12). In contrast, application of the EnKF to correct antecedent soil mois-20

ture predictions yields a significant improvement to upper-zone soil moisture estimates
but leads to no net improvement to daily total runoff. Modifying the state-estimation
technique to be based on a fixed-lag EnKS reanalysis (Case 3) clearly enhances the
accuracy of both runoff predictions and soil moisture estimates relative to the analo-
gous EnKF-based case (Case 2).25

Despite this improvement, Case 3 results are still based solely on the application of
a state-correction strategy. Cases 4 and 5 results in Fig. 6 demonstrate how optimal
aspects of Cases 1, 2 and 3 runoff and soil moisture results can be combined, and even
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enhanced, by reformulating the estimation problem using either of the dual state/rainfall
strategies (Cases 4 and 5) outlined in Fig. 4. In particular, Case 5 is able to match the
high soil moisture accuracy of Case 3 while providing runoff results which are even
slightly better than already good Case 1 results.

As noted in Sect. 1, a danger in our strategy for simultaneously correcting both rain-5

fall and internal soil moisture states is that information contained in surface soil mois-
ture retrievals will be overexploited – leading to the possibility of degenerate runoff
predictions. Case 4 results in Fig. 6 illustrate such an example. Here, surface soil
moisture retrievals are used both to correct rainfall amounts used to forecast the SAC
model ensemble and as the observation assimilated into the ensemble via an EnKS.10

This leads to cross-correlation between SAC model forecasting error and observation
error in remotely-sensed soil moisture retrievals assimilated into the SAC model by the
EnKS. Such correlation violates a key Kalman filtering assumption and degrades Case
4 soil moisture and runoff results relative to their Case 5 equivalents (Fig. 6). By with-
holding the use of corrected rainfall until the post-processing calculation of runoff (and15

discarding soil moisture predictions made by the SAC model during this calculation),
Case 5 avoids the negative impact of cross-correlated errors and produces superior
runoff and soil moisture predictions.

While mildly degraded results are noted in Fig. 6, the full effect of this degeneracy
appears only in SAC lower-zone soil moisture results. Figure 7 is identical to Fig. 620

except the y-axis is re-plotted as normalized lower-zone soil moisture RMSE (instead
of daily runoff). Lower-zone soil moisture is defined as

θzone2=ρ(LZTWC+LZPFC+LZSFC)/(LZTWM+LZPFM+LZSFM) (18)

where LZTWM, LZPFM and LZSFM are maximum capacities of SAC model states
LZTWC, LZPFC and LZSFC, respectively. Because the states underlying lower-zone25

soil moisture are not directly observed via H
∗ in Eq. (16), and the SAC model predicts

relatively little vertical coupling between its upper and lower soil zones, all cases in
Fig. 4 provide only a modest correction relative to the open loop. However, Case 4 re-
sults cannot even meet this minimal threshold and instead clearly degrade lower-zone
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soil moisture predictions relative to the open loop. The source of this degradation is
the cross-correlation of modeling and observational error induced by using corrected
rainfall accumulations during the EnKS forecast step. The long-term effects of this cor-
relation are particularly pernicious for lower-zone soil moisture estimates since these
values cannot be directly constrained via surface observations and can therefore accu-5

mulate unchecked over long time periods. As a result of this problem, Case 4 results
will be dropped from the remainder of the analysis.

6.2 Sensitivity of results to climate and runoff processes

As demonstrated in Fig. 2, MOPEX basins selected for this study capture a wide range
of long-term runoff ratio values. Such variability is lost upon the averaging performed to10

construct Figs. 6 and 7. In order to examine any possible trends with regards to climate,
Fig. 8 re-plots normalized daily runoff RMSE results as a function of long-term basin
runoff ratio (sorted from the driest to the wettest of the 97 MOPEX basins). Despite a
large range of overall basin wetness, little variation is observed when moving from drier
to wetter basins. For all basins, regardless of long-term climate characteristics, Case 215

provides little or no added skill to runoff predictions; however roughly equal added skill
is obtained upon reformulating the problem using a smoothing approach (Case 3) and,
subsequently, adding a rainfall correction component (Case 5).

Despite a lack of strong variation of results with climate, insight into Figs. 6 and 8
can be obtained by decomposing total runoff results into various individual runoff pro-20

cesses captured by the SAC model. Here, total SAC model runoff consists of four
separate components: surface infiltration-excess runoff (SIR), surface saturation runoff
(SSR), shallow sub-surface interflow (SIF) and deep sub-surface base flow (BF). A
useful classification is to divide these four separate processes into “direct” and “indi-
rect” runoff generation processes. Indirect runoff components SIF and BF are runoff25

processes in which the rainwater path to channel flow proceeds through one (or more)
of the SAC model soil moisture states. The rate at which these processes operate is
therefore a direct function of soil moisture and only indirectly linked to antecedent rain-
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fall. Consequently, they can be adequately constrained by state estimation techniques.
The impact of this is seen in Fig. 9, where no added advantage (in terms of RMSE
accuracy) is associated with adding our rainfall correction approach on top of EnKS
state estimation results (i.e. equivalent results for SIF and BF are obtained in Cases
3 and 5). Overall better correction results for SIF relative to BF can be attributed to5

the sensitivity of SIF to upper-zone soil moisture states that are assumed to be directly
observed by remotely-sensed surface soil moisture retrievals.

In contrast, direct runoff processes are those in which - during saturated surface
conditions - rainfall is directly routed to runoff without first transitioning through an in-
termediate soil moisture state. Consequently, antecedent soil moisture impacts these10

processes only indirectly through the specification of a pre-storm infiltration capacity or
the extent of saturated contributing areas. Improved specification of these soil moisture
states via application of the EnKS leads to improved SER and SSR results relative to
the EnKF baseline (compare Cases 2 and 3 in Fig. 9). However, because of their direct
link to rainfall, SER and SSR estimates can be further enhanced through the applica-15

tion of our dual rainfall/state correction procedure (compare Cases 3 and 5 in Fig. 9).
Therefore the relative advantage of Case 5 (noted in Figs. 6 and 8) is based solely on
the improved constraint of direct, surface runoff processes captured by the SAC model.

The importance of direct runoff processes can also be observed when varying the
performance metric by which SAC runoff predictions are evaluated in Fig. 6. Qualita-20

tively similar results are obtained when regenerating Fig. 6 using mean absolute error
(MAE), as opposed to RMSE, as the performance metric for SAC runoff predictions
(not shown). However, the relative magnitude of correction observed in Case 5 results
is reduced. For instance, defining the relative fraction of open loop error in terms of
MAE (i.e. assimilation MAE/open loop MAE) as opposed to RMSE, increases the frac-25

tion of open loop error for Case 5 results from 0.44 to 0.75 and decreases the marginal
advantage of Case 5 results versus Case 3 results from 0.31 to 0.11. This reduction
is associated with the reduced weight that MAE applies to large runoff events relative
to RMSE and would seem to indicate that the marginal benefit of our dual state/rainfall
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correction procedure (as expressed by the difference between Case 5 and Case 3
results) lies primarily in constraining relatively high flow events dominated by direct
surface runoff.

6.3 Sensitivity of results to error assumptions

A large number of assumptions underlie the synthetic data assimilation results pre-5

sented in Figs. 5 to 9. Perhaps most critically, the magnitude of synthetic noise, intro-
duced to represent observational and modeling uncertainty in the synthetic experiment,
is specified in a somewhat arbitrary manner. Here we examine the sensitivity of key
results to these values.

The introduction of error in rainfall observations is based on the multiplicative rescal-10

ing of daily rainfall values by a random variable sampled from a mean-one, log-normal
distribution. By varying the standard deviation of this distribution, various levels of
RMSE error in estimates of daily rainfall accumulation can be obtained. For instance,
the default choice of one for the standard deviation of χ in Eq. (17) produces an aver-
age daily rainfall RMSE of about 8.5 mm. Figure 10 recalculates Case 1, 2, 3 and 515

results for a range of specified standard deviations, and thus long-term RMSE, in daily
rainfall accumulations. For computational reasons, these sensitivity results are derived
for only the sub-set of 5 MOPEX basins shown in Fig. 2.

For small rainfall errors, Fig. 10 demonstrates minor runoff corrections relative to the
open loop. This suggests that, for well-instrumented basins in which highly accurate20

rainfall accumulation estimates can be obtained, none of our proposed strategies for
integrating surface soil moisture retrievals are effective for correcting SAC model runoff
predictions relative to the open loop. However, as rainfall error increases, substantial
improvement is noted for Case 1 (“Rainfall Correction Only”), Case 3 (“EnKS State
Correction Only”) and Case 5 (“Dual State/Rainfall Correction”) results. Of particular25

relevance is the relative difference between the best state correction-only case (clearly
Case 3) and the dual state/rainfall correction case (Case 5). A substantial difference
between the two cases does not appear until a moderate (>4 mm) level of rainfall accu-
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mulation RMSE is reached. Above this point, however, the relative advantage of Case
5 is clear and a substantial relative advantage is associated with the implementation of
our rainfall correction scheme. Over continental areas, levels of daily RMSE between
6 and 10 mm are not uncommon in many satellite rainfall accumulation products lack-
ing rain gauge correction (see e.g. Crow and Bolten, 2007). Consequently, it appears5

that the largest applicability of our approach will be for regions in which operational hy-
drologic forecasting applications depend heavily on uncorrected satellite retrievals for
real-time rainfall information. The procedure will be of substantially less value for heav-
ily instrumented regions in which accurate real-time rainfall accumulation information
is available from ground-based instrumentation.10

Conversely, one might expect a reverse trend when varying the magnitude of pertur-
bations applied directly to internal model states and/or SAC PET inputs (see Sect. 4).
Since these perturbations are not tied to rainfall uncertainty, an increase in their magni-
tude will increase the fraction of total modeling error that cannot be addressed through
our rainfall correction scheme. Consequently, the additional advantage of the dual15

correction strategy in Case 5 might be lessened relative to the application of the state-
correction only approach in Case 3. However, this tendency is not noted in sensitivity
results in which the magnitude of these perturbations is increased. Such results (not
shown) demonstrate little variation in the performance of Case 3 and Case 5 relative
to the open loop. One potential reason for this lack of sensitivity may be known bias20

problems encountered when propagating mean-zero model state perturbations (as re-
quired by the Monte Carlo nature of the EnKS and EnKF) through a nonlinear model
(Ryu et al.1). These biases limit the effectiveness of EnKF or EnKS state correction
techniques when applied to models with higher levels of internal uncertainty. This ten-
dency may counter the relative advantage enjoyed by state-correction techniques when25

internal modeling errors are large compared to external rainfall forcing errors. Regard-

1Ryu, D., Crow, W. T., Zhan, X., and Jackson, T. J.: Correcting unintended perturbation
biases in hydrologic data assimilation using the Ensemble Kalman filter, J. Hydrometeorol.,
submitted, 2008.
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less of the specific cause, the relative advantage of Case 5 versus Case 3 seen in
Figs. 6 and 8 is essentially maintained for a wide range of error variances assumed for
perturbations to internal SAC model states and PET input.

6.4 Sensitivity of results to observation characteristics

In addition to assumptions concerning modeling uncertainties, a series of attributes5

are also assumed for remotely-sensed surface soil moisture retrievals. Specifically,
they are assumed to be available on a daily frequency, measure approximately the
top 10 cm of the soil column and have a RMSE accuracy of 0.03 [cm3 cm−3] volu-
metric. In general, these assumptions are optimistic reflections of expectations for
next-generation satellite retrievals and the impact of less ideal retrieval conditions must10

be considered.
Figure 11 displays Case 1, 2, 3 and 5 results for a series of synthetic data assimila-

tion experiments in which the accuracy, frequency and measurement depth of surface
soil moisture retrievals have been systematically varied. With regards to retrieval ac-
curacy (Fig. 11a) and frequency (Fig. 11b), there exists a systematic narrowing of the15

difference between Case 3 and Case 5 as retrieval error increases and/or frequency
decreases. This suggests that benefits of our rainfall retrieval correction approach
are relatively more sensitive to limitations in the accuracy and frequency of retrievals
than EnKF/EnKS state correction approaches. Given the need to correct daily rainfall
accumulation amounts, the reduction in accuracy observed in Fig. 11b for retrieval fre-20

quencies of less than once per day is not surprising. However, it is worth noting that
from the mid-latitudes to the poles, combining ascending and descending overpass
data from passive microwave sensors (e.g. AMSR-E) typically provides measurements
for at least 4 out of every 5 days.

Of all the assumptions underlying the generation of synthetic retrievals, the least25

realistic is probably the assumption of a 10-cm vertical measurement depth. This as-
sumption was made in order to make the observational support of remote sensing
retrievals consistent with calibrated values of SAC model upper-zone layer depth ob-
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tained from the MOPEX experiment. However, a 10-cm measurement depth is larger
than typical estimates for the vertical penetration depth of remotely-sensed surface soil
moisture retrievals (usually between 1 and 5 cm). Consequently, the impact of smaller
measurement depths must be considered. Figure 11c displays results for the system-
atic reduction of the upper-zone depth in the SAC model to values smaller than 10 cm.5

It reveals a general tendency for the difference between Case 3 and Case 5 results
to increase upon a decrease in the upper-zone depth of the SAC model. There are
several reasons for this tendency. First, utilizing a thin upper-zone in the SAC model
prompts the model to produce higher amounts of direct surface runoff relative to indi-
rect, sub-surface runoff. Such a shift is critical because the basis of improved Case10

5 results (relative to Case 3) is the presence of substantial amounts of direct surface
runoff (Fig. 9). In addition, the use of a thinner upper-zone decreases correlation be-
tween observations of the upper-zone and the non-observed lower-zone. This, in turn,
limits the ability of the EnKS to accurately constrain lower-zone soil moisture variables.
This reduction in the information content of the upper-zone observations is less of a15

problem for our rainfall correction scheme since it concerns itself solely with the pre-
diction of a flux into the upper-zone of the SAC model. Consequently, our choice of an
unrealistically thick upper-zone likely reduces the relative positive impact of introducing
our rainfall correction scheme into hydrologic forecasting.

7 Operational prospects for approach20

All results presented here are based on a synthetic twin experimental methodology in
which remotely-sensing surface soil moisture retrievals are artificially generated and
assimilated into a hydrologic model. Such experiments are required an initial proof-of-
concept for new data assimilation systems. Nevertheless, it is important to consider
the likelihood of duplicating encouraging synthetic results when using actual remote25

sensing data.
For instance, a key result in this analysis is the demonstration that adaptation of
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our dual rainfall and soil moisture correction scheme (Case 5 in Fig. 3) scheme can
improve SAC model runoff results above and beyond levels obtainable using the best
state correction technique (Case 3 in Fig. 3). Consequently, an important issue is the
degree to which arbitrary assumptions imbedded in our synthetic experiment method-
ology can affect the magnitude of this difference. On this point, it should first be noted5

that – in our particular synthetic twin methodology – state correction-only cases (Cases
2 and 3) retain an artificial advantage in that synthetic surface soil moisture observa-
tions are generated by the same model (the SAC model) that they are subsequently
assimilated into. In the terminology of synthetic data assimilation experiments this is
referred to as an identical-twin experiment. In contrast, rainfall correction results are10

based on the cross-assimilation of synthetic surface soil moisture retrievals (generated
by the SAC model) into an API model. This lack of consistency between models means
our rainfall correction strategy is tested using a fraternal twin synthetic experiment in
which observations generated by one model are assimilated into a different model. In
general, identical twin experiments should yield better results than fraternal twin exper-15

iments – suggesting that our particular synthetic experiment methodology favors the
performance of state-correction strategies relative to strategies employing our rainfall
correction approach. In addition, our decision to assume a thick (10 cm) upper-zone
depth for the SAC model may reduce the relative benefit of our proposed approach
relative to existing state-correction procedures (Fig. 11c).20

Conversely, there are additional aspects of our particular approach which have the
opposite effect and may artificially enhance the relative benefit of our new approach.
Figure 11a and b appear to demonstrate a tendency for limitations in retrieval accuracy
and frequency to disproportionately affect our dual correction case (relative to state-
correction only cases). This tendency suggests that overly optimistic assumptions25

concerning the frequency and accuracy of remote sensing retrievals will aid rainfall cor-
rection more than state correction. In addition, the tuning of λ in Eq. (9) is based here
on the assumption that high-quality MOPEX rain gauges are available for calibration
purposes. If comparably accurate rain gauge data is not available in an operational
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setting it is possible to calibrate λ using only satellite-based rainfall data. However,
such alternative calibration is associated with a slight reduction in the performance of
the rainfall correction procedure (Crow et al., 2008).

Another key consideration is the spatial and temporal scales at which our rainfall
correction procedure is effective. At best, it can correct rainfall at time/space scales5

consistent with the ground resolution (typically 10–40 km) and revisit times (1 to 3 days)
of satellite-based soil moisture retrievals. Real data results using the AMSR-E sensor
indicate difficulties in correcting rainfall accumulation information at time scales finer
than about 2 days (Crow et al., 2008). Obviously, restricting correction to such coarse
scales will limit the effectiveness of our approach when applied to hydrologic prediction10

applications – such as flash flood forecasting – requiring rainfall accumulation infor-
mation at much finer space-time scales. Consequently, the highest potential for an
operational application will likely be the prediction and monitoring of large-scale flood-
ing events associated with prolonged periods (days to weeks) of excessive rainfall and
flooding over large geographic regions (>1002 km2).15

A final concern is the degree to which the adaptation of a reanalysis smoothing
(rather than a sequential filtering) formulation will degrade the real-time functioning of
a hydrologic forecasting/prediction system. The adoption of a smoothing framework
will necessarily increase the latency of SAC model runoff predictions since it requires
the acquisition of a soil moisture observation following a given storm period prior to the20

calculation of soil moisture and runoff for the same period. However, such delays may
be small since, even in the absence of any soil moisture data assimilation, an oper-
ational system stills needs to wait until the acquisition of rainfall accumulation obser-
vations (presumably from some real-time rainfall observing system) to forecast stream
flow. Consequently, the added delay required to obtain and process a subsequent soil25

moisture observation may not add substantial prediction latency to the system.
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8 Summary

To date, efforts to improve hydrologic model stream flow predictions have focused
on the sequential assimilation of remotely-sensed surface soil moisture to constrain
pre-storm antecedent soil moisture conditions (see e.g. Crow et al., 2005). However,
such approaches have not generally been successful at demonstrating clear value for5

remotely-sensed soil moisture retrievals in hydrologic applications. Here we propose
an alternative reanalysis system (in Case 5 in Fig. 4) that reformulates the hydrologic
prediction problems into a smoothing framework which simultaneously corrects both
hydrologic model internal soil moisture states and external rainfall input feed into the
model. Preliminary testing of the approach using a synthetic twin methodology sug-10

gests that, for a wide range of climatic conditions (Fig. 1), the approach can enhance
the value of remotely-sensed soil moisture retrievals for runoff and stream flow pre-
diction applications (Figs. 6 and 8) – particularly for high flow events in which direct,
surface runoff processes play a dominant role in generating stream flow (Fig. 9). Since
the advantages of our dual approach emerge only at relatively high levels of rainfall15

error (Fig. 10), its primary utility will likely be for large-scale flood forecasting in areas
of the world lacking sufficient ground-based resources for the real-time monitoring of
rainfall. Ongoing follow-up work will attempt to demonstrate this possibility using real
remotely-sensed soil moisture to obtain a more realistic description of the approach’s
operational potential.20
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Fig. 1. Drainage size and long-term runoff ratio (mean annual runoff/mean annual rainfall) at
the outlet of the 97 MOPEX basins used in the study.
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Fig. 2. Comparison of SAC model stream flow predictions with observed hydrographs for five
representative MOPEX basins. United States Geologic Survey (USGS) basin identification
number, long-term runoff ratio (RR) and drained area at basin outlet are listed for each basin.
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Fig. 3. Schematics for the assimilation of remotely-sensed soil moisture retrievals θ◦ into the
SAC model (to improve its internal soil moisture states S) using both an Ensemble Kalman
filtering (EnKF; top) and fixed-lag Ensemble Kalman Smoothing (EnKS; bottom) approach.
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Fig. 4. Schematics for five cases of incorporating remotely-sensed surface soil moisture re-
trievals (θ or θ◦) into SAC model runoff (RunoffSAC) and soil moisture (SSAC) predictions. The
dashed box in Case 1, 4 and 5 represents the observed rainfall (P ′) rainfall correction proce-
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Fig. 5. For USGS basin #02228000, example time series of truth, open case and corrected
(Case 5) (a) rainfall, (b) SAC upper-zone soil moisture and (c) SAC runoff results.
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Fig. 7. Upper- and lower-zone soil moisture results for the five cases outlined in Fig. 3. Plotted
symbols represent the mean of RMSE results (normalized by open loop RMSE results) for all
basins. Error bars represent the one-standard deviation spread of results across all 97 MOPEX
basins. Case 3 results (not shown) correspond exactly to shown Case 5 results.
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Fig. 8. Impact of basin runoff ratio (mean annual runoff/mean annual rainfall) on Case 2, 3 and
5 runoff results.

2041

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 2005–2044, 2008

Improving hydrologic
prediction using data

assimilation

W. T. Crow and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

TOTAL SER SSR SIF BF 
Runoff Component

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 R

un
of

f 
O

pe
n 

L
oo

p 
R

M
SE

Case 2 (State Correction Only - EnKF)
Case 3 (State Correction Only - EnKS)
Case 5 (Dual Rainfall/State Correction)

Fig. 9. Case 2, 3 and 5 total runoff results decomposed into surface excess runoff (SER),
surface saturation runoff (SSR), surface interflow (SIF) and base flow (BF) components.

2042

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2005/2008/hessd-5-2005-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 2005–2044, 2008

Improving hydrologic
prediction using data

assimilation

W. T. Crow and D. Ryu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0 2 4 6 8 10 12
Daily Rainfall Accumulation RMSE [mm]

0.25

0.5

0.75

1

1.25
Fr

ac
tio

n 
of

 O
pe

n 
L

oo
p 

R
un

of
f 

R
M

SE
 [

-]

Case 1 (Rainfall Correction Only)
Case 2 (State Correction Only - EnKF)
Case 3 (State Correction Only - EnKS)
Case 5 (Dual State/Rainfall Correction)

Fig. 10. Sensitivity of Case 1, 2, 3 and 5 runoff results to the magnitude of rainfall error.
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Fig. 11. The sensitivity of Case 1, 2, 3 and 5 runoff results to (a) the accuracy, (b) the frequency
and (c) the vertical measurement depth of remotely-sensed surface soil moisture retrievals.
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